Схема зу для акб с регулировкой тока. Как сделать зарядное устройство для автомобильного аккумулятора своими руками. Схема зарядки для экстренных случаев

Кто не сталкивался в своей практике с необходимостью зарядки батареи и, разочаровавшись в отсутствии зарядного устройства с необходимыми параметрами, вынужден был приобретать новое ЗУ в магазине, либо собирать вновь нужную схему?
Вот и мне неоднократно приходилось решать проблему зарядки различных аккумуляторных батарей, когда под рукой не оказывалось подходящего ЗУ. Приходилось на скорую руку собирать что-то простое, применительно к конкретному аккумулятору.

Ситуация была терпимой до того момента, пока не появилась необходимость в массовой подготовке и, соответственно, зарядке батарей. Понадобилось изготовить несколько универсальных ЗУ - недорогих, работающих в широком диапазоне входных и выходных напряжений и зарядных токов.

Предлагаемые ниже схемы ЗУ были разработаны для зарядки литий-ионных аккумуляторов, но существует возможность зарядки и других типов аккумуляторов и составных батарей (с применением однотипных элементов, далее - АБ).

Все представленные схемы имеют следующие основные параметры:
входное напряжение 15-24 В;
ток заряда (регулируемый) до 4 А;
выходное напряжение (регулируемое) 0,7 - 18 В (при Uвх=19В).

Все схемы были ориентированы на работу с блоками питания от ноутбуков либо на работу с другими БП с выходными напряжениями постоянного тока от 15 до 24 Вольт и построены на широко распространенных компонентах, которые присутствуют на платах старых компьютерных БП, БП прочих устройств, ноутбуков и пр.

Схема ЗУ № 1 (TL494)


ЗУ на схеме 1 является мощным генератором импульсов, работающим в диапазоне от десятков до пары тысяч герц (частота варьировалась при исследованиях), с регулируемой шириной импульсов.
Зарядка АБ производится импульсами тока, ограниченного обратной связью, образованной датчиком тока R10, включенным между общим проводом схемы и истоком ключа на полевом транзисторе VT2 (IRF3205), фильтром R9C2, выводом 1, являющимся «прямым» входом одного из усилителей ошибки микросхемы TL494.

На инверсный вход (вывод 2) этого же усилителя ошибки подается регулируемое посредством переменного резистора PR1, напряжение сравнения с встроенного в микросхему источника опорного напряжения (ИОН - вывод 14), меняющего разность потенциалов между входами усилителя ошибки.
Как только величина напряжения на R10 превысит значение напряжения (установленного переменным резистором PR1) на выводе 2 микросхемы TL494, зарядный импульс тока будет прерван и возобновлен вновь лишь при следующем такте импульсной последовательности, вырабатываемой генератором микросхемы.
Регулируя таким образом ширину импульсов на затворе транзистора VT2, управляем током зарядки АБ.

Транзистор VT1, включенный параллельно затвору мощного ключа, обеспечивает необходимую скорость разрядки затворной емкости последнего, предотвращая «плавное» запирание VT2. При этом амплитуда выходного напряжения при отсутствии АБ (или прочей нагрузки) практически равна входному напряжению питания.

При активной нагрузке выходное напряжение будет определяться током через нагрузку (её сопротивлением), что позволит использовать эту схему в качестве драйвера тока.

При заряде АБ напряжение на выходе ключа (а, значит, и на самой АБ) в течении времени будет стремиться в росте к величине, определяемой входным напряжением (теоретически) и этого, конечно, допустить нельзя, зная, что величина напряжения заряжаемого литиевого аккумулятора должна быть ограничена на уровне 4,1 В (4,2 В). Поэтому в ЗУ применена схема порогового устройства, представляющего из себя триггер Шмитта (здесь и далее - ТШ) на ОУ КР140УД608 (IC1) или на любом другом ОУ.

При достижении необходимого значения напряжения на АБ, при котором потенциалы на прямом и инверсном входах (выводы 3, 2 - соответственно) IC1 сравняются, на выходе ОУ появится высокий логический уровень (практически равный входному напряжению), заставив зажечься светодиод индикации окончания зарядки HL2 и светодиод оптрона VH1 который откроет собственный транзистор, блокирующий подачу импульсов на выход U1. Ключ на VT2 закроется, заряд АБ прекратится.

По окончании заряда АБ он начнет разряжаться через встроенный в VT2 обратный диод, который окажется прямовключенным по отношению к АБ и ток разряда составит приблизительно 15-25 мА с учетом разряда кроме того через элементы схемы ТШ. Если это обстоятельство кому-то покажется критичным, в разрыв между стоком и отрицательным выводом АБ следует поставить мощный диод (лучше с малым прямым падением напряжения).

Гистерезис ТШ в этом варианте ЗУ выбран таким, что заряд вновь начнется при понижении величины напряжения на АБ до 3,9 В.

Это ЗУ можно использовать и для заряда последовательно соединенных литиевых (и не только) АБ. Достаточно откалибровать с помощью переменного резистора PR3 необходимый порог срабатывания.
Так, например, ЗУ, собранный по схеме 1, функционирует с трехсекционной последовательной АБ от ноутбука, состоящей из сдвоенных элементов, которая была смонтирована взамен никель-кадмиевой АБ шуруповерта.
БП от ноутбука (19В/4,7А) подключен к ЗУ, собранному в штатном корпусе ЗУ шуруповерта взамен оригинальной схемы. Зарядный ток «новой» АБ составляет 2 А. При этом транзистор VT2, работая без радиатора нагревается до температуры 40-42 С в максимуме.
ЗУ отключается, естественно, при достижении напряжения на АБ=12,3В.

Гистерезис ТШ при изменении порога срабатывания остается прежним в ПРОЦЕНТНОМ отношении. Т.е., если при напряжении отключения 4,1 В, повторное включение ЗУ происходило при снижении напряжения 3,9 В, то в данном случае повторное включение ЗУ происходит при снижении напряжения на АБ до 11,7 В. Но при необходимости глубину гистерезиса можно изменить.

Калибровка порога и гистерезиса зарядного устройства

Калибровка происходит при использовании внешнего регулятора напряжения (лабораторного БП).
Выставляется верхний порог срабатывания ТШ.
1. Отсоединяем верхний вывод PR3 от схемы ЗУ.
2. Подключаем «минус» лабораторного БП (далее везде ЛБП) к минусовой клемме для АБ (самой АБ в схеме во время настройки быть не должно), «плюс» ЛБП - к плюсовой клемме для АБ.
3. Включаем ЗУ и ЛБП и выставляем необходимое напряжение (12,3 В, например).
4. Если горит индикация окончания заряда, вращаем движок PR3 вниз (по схеме) до гашения индикации (HL2).
5. Медленно вращаем движок PR3 вверх (по схеме) до зажигания индикации.
6. Медленно снижаем уровень напряжения на выходе ЛБП и отслеживаем значение, при котором индикация вновь погаснет.
7. Проверяем уровень срабатывания верхнего порога еще раз. Хорошо. Можно настроить гистерезис, если не устроил уровень напряжения, включающий ЗУ.
8. Если гистерезис слишком глубок (включение ЗУ происходит при слишком низком уровне напряжения - ниже, например, уровня разряда АБ, выкручиваем движок PR4 влево (по схеме) или наоборот, - при недостаточной глубине гистерезиса, - вправо (по схеме). При изменении глубины гистерезиса уровень порога может сместиться на пару десятых долей вольта.
9. Сделайте контрольный прогон, поднимая и опуская уровень напряжения на выходе ЛБП.

Настройка токового режима еще проще.
1. Отключаем пороговое устройство любыми доступными (но безопасными) способами: например, «посадив» движок PR3 на общий провод устройства или «закорачивая» светодиод оптрона.
2. Вместо АБ подключаем к выходу ЗУ нагрузку в виде 12-вольтовой лампочки (например, я использовал для настройки пару 12V ламп на 20 Вт).
3. Амперметр включаем в разрыв любого из проводов питания на входе ЗУ.
4. Устанавливаем на минимум движок PR1 (максимально влево по схеме).
5. Включаем ЗУ. Плавно вращаем ручку регулировки PR1 в сторону роста тока до получения необходимого значения.
Можете попробовать поменять сопротивление нагрузки в сторону меньших значений ее сопротивления, присоединив параллельно, скажем, ещё одну такую же лампу или даже «закоротить» выход ЗУ. Ток при этом не должен измениться значительно.

В процессе испытаний устройства выяснилось, что частоты в диапазоне 100-700 Гц оказались оптимальными для этой схемы при условии использования IRF3205, IRF3710 (минимальный нагрев). Так как TL494 используется неполно в этой схеме, свободный усилитель ошибки микросхемы можно использовать, например, для работы с датчиком температуры.

Следует иметь в виду и то, что при неправильной компоновке даже правильно собранное импульсное устройство будет работать некорректно. Поэтому не следует пренебрегать опытом сборки силовых импульсных устройств, описанном в литературе неоднократно, а именно: все одноименные «силовые» соединения следует располагать на кратчайшем расстоянии относительно друг друга (в идеале - в одной точке). Так, например, точки соединения такие, как коллектор VT1, выводы резисторов R6, R10 (точки соединения с общим проводом схемы), вывод 7 U1 - следует объединить практически в одной точке либо посредством прямого короткого и широкого проводника (шины). То же касается и стока VT2, вывод которого следует «повесить» непосредственно на клемму "-" АБ. Выводы IC1 также должны находиться в непосредственной «электрической» близости к клеммам АБ.

Схема ЗУ № 2 (TL494)


Схема 2 не сильно отличается от схемы 1, но если предыдущая версия ЗУ была придумана для работы с АБ шуруповерта, то ЗУ на схеме 2 задумывалось, как универсальное, малогабаритное (без лишних элементов настройки), рассчитанное для работы как с составными, последовательно включенными элементами числом до 3-х, так и с одиночными.

Как видно, для быстрой смены токового режима и работы с разным количеством последовательно соединенных элементов, введены фиксированные настройки с подстроечными резисторами PR1-PR3 (установка тока), PR5-PR7 (установка порога окончания зарядки для разного количества элементов) и переключателей SA1 (выбор тока зарядки) и SA2 (выбор количества заряжаемых элементов АБ).
Переключатели имеют по два направления, где вторые их секции переключают светодиоды индикации выбора режима.

Ещё одно отличие от предыдущего устройства - использование второго усилителя ошибки TL494 в качестве порогового элемента (включенного по схеме ТШ), определяющего окончание зарядки АБ.

Ну, и, конечно, в качестве ключа использован транзистор р-проводимости, что упростило полное использование TL494 без применения дополнительных компонентов.

Методика настройки порогов окончания зарядки и токовых режимов такая же , как и для настройки предыдущей версии ЗУ. Разумеется, для разного количества элементов, порог срабатывания будет меняться кратно.

При испытании этой схемы был замечен более сильный нагрев ключа на транзисторе VT2 (при макетировании использую транзисторы без радиатора). По этой причине следует использовать другой транзистор (которого у меня просто не оказалось) соответствующей проводимости, но с лучшими токовыми параметрами и меньшим сопротивлением открытого канала, либо удвоить количество указанных в схеме транзисторов, включив их параллельно с раздельными затворными резисторами.

Использование указанных транзисторов (в «одиночном» варианте) не критично в большинстве случаев, но в данном случае размещение компонентов устройства планируется в малогабаритном корпусе с использованием радиаторов малого размера или вовсе без радиаторов.

Схема ЗУ № 3 (TL494)


В ЗУ на схеме 3 добавлено автоматическое отключение АБ от ЗУ с переключением на нагрузку. Это удобно для проверки и исследования неизвестных АБ. Гистерезис ТШ для работы с разрядом АБ следует увеличить до нижнего порога (на включение ЗУ), равного полному разряду АБ (2,8-3,0 В).

Схема ЗУ № 3а (TL494)


Схема 3а - как вариант схемы 3.

Схема ЗУ № 4 (TL494)


ЗУ на схеме 4 не сложнее предыдущих устройств, но отличие от предыдущих схем в том, что АБ здесь заряжается постоянным током, а само ЗУ является стабилизированным регулятором тока и напряжения и может быть использовано в качестве модуля лабораторного источника питания, классически построенного по «даташитовским» канонам.

Такой модуль всегда пригодится для стендовых испытаний как АБ, так и прочих устройств. Имеет смысл использование встроенных приборов (вольтметр, амперметр). Формулы расчета накопительных и помеховых дросселей описаны в литературе. Скажу лишь, что использовал готовые различные дроссели (с диапазоном указанных индуктивностей) при испытаниях, экспериментируя с частотой ШИМ от 20 до 90 кГц. Особой разницы в работе регулятора (в диапазоне выходных напряжений 2-18 В и токов 0-4 А) не заметил: незначительные изменения в нагреве ключа (без радиатора) меня вполне устраивали. КПД, однако, выше при использовании меньших индуктивностей.
Лучше всего регулятор работал с двумя последовательно соединенными дросселями 22 мкГн в квадратных броневых сердечниках от преобразователей, интегрированных в материнские платы ноутбуков.

Схема ЗУ № 5 (MC34063)


На схеме 5 вариант ШИ-регулятора с регулировкой тока и напряжения выполнена на микросхеме ШИМ/ЧИМ MC34063 с «довеском» на ОУ CA3130 (возможно использование прочих ОУ), с помощью которого осуществляется регулировка и стабилизация тока.
Такая модификация несколько расширила возможности MC34063 в отличии от классического включения микросхемы позволив реализовать функцию плавной регулировки тока.

Схема ЗУ № 6 (UC3843)


На схеме 6 - вариант ШИ-регулятора выполнен на микросхеме UC3843 (U1), ОУ CA3130 (IC1), оптроне LTV817. Регулировка тока в этом варианте ЗУ осуществляется с помощью переменного резистора PR1 по входу токового усилителя микросхемы U1, выходное напряжение регулируется с помощью PR2 по инвертирующему входу IC1.
На «прямом» входе ОУ присутствует «обратное» опорное напряжение. Т.е., регулирование производится относительно "+" питания.

В схемах 5 и 6, при экспериментах использовались те же наборы компонентов (включая дроссели). По результатам испытаний все перечисленные схемы мало в чем уступают друг другу в заявленном диапазоне параметров (частота/ток/напряжение). Поэтому схема с меньшим количеством компонентов предпочтительнее для повторения.

Схема ЗУ № 7 (TL494)


ЗУ на схеме 7 задумывалось, как стендовое устройство с максимальной функциональностью, потому и по объему схемы и по количеству регулировок ограничений не было. Данный вариант ЗУ так же выполнен на базе ШИ-регулятора тока и напряжения, как и вариант на схеме 4.
В схему введены дополнительно режимы.
1. «Калибровка - заряд» - для предварительной установки порогов напряжения окончания и повтора зарядки от дополнительного аналогового регулятора.
2. «Сброс» - для сброса ЗУ в режим заряда.
3. «Ток - буфер» - для перевода регулятора в токовый или буферный (ограничение выходного напряжения регулятора в совместном питании устройства напряжением АБ и регулятора) режим заряда.

Применено реле для коммутации батареи из режима «заряд» в режим «нагрузка».

Работа с ЗУ аналогична работе с предыдущими устройствами. Калибровка осуществляется переводом тумблера в режим «калибровка». При этом контакт тумблера S1 подключает пороговое устройство и вольтметр к выходу интегрального регулятора IC2. Выставив необходимое напряжение для предстоящей зарядки конкретной АБ на выходе IC2, с помощью PR3 (плавно вращая) добиваются зажигания светодиода HL2 и, соответственно, срабатывания реле К1. Уменьшая напряжение на выходе IC2, добиваются гашения HL2. В обоих случаях контроль осуществляется встроенным вольтметром. После установки параметров срабатывания ПУ, тумблер переводится в режим заряда.

Схема № 8

Применения калибровочного источника напряжения можно избежать, используя для калибровки собственно ЗУ. В этом случае следует отвязать выход ТШ от ШИ-регулятора, предотвратив его выключение при окончании заряда АБ, определяемым параметрами ТШ. АБ так или иначе будет отключена от ЗУ контактами реле К1. Изменения для этого случая показаны на схеме 8.


В режиме калибровки тумблер S1 отключает реле от плюса источника питания для предотвращения неуместных срабатываний. При этом работает индикация срабатывания ТШ.
Тумблер S2 осуществляет (при необходимости) принудительное включение реле К1 (только при отключенном режиме калибровки). Контакт К1.2 необходим для смены полярности амперметра при переключении батареи на нагрузку.
Таким образом однополярный амперметр будет контролировать и ток нагрузки. При наличии двухполярного прибора, этот контакт можно исключить.

Конструкция зарядного устройства

В конструкциях желательно в качестве переменных и подстроечных резисторов использование многооборотных потенциометров во избежании мучений при установке необходимых параметров.


Варианты конструктива приведены на фото. Схемы распаивались на перфорированных макетных платах экспромтом. Вся начинка смонтирована в корпусах от ноутбучных БП.
В конструкциях использовались (они же использовались и в качестве амперметров после небольшой доработки).
На корпусах смонтированы гнезда для внешнего подключения АБ, нагрузки, джек для подключения внешнего БП (от ноутбука).


За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования.
Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.

Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. - электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все - такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

Читательское голосование

Статью одобрили 77 читателей.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.

Как происходит зарядка аккумулятора? Схема этого устройства сложна или нет, для того чтобы сделать устройство своими руками? Отличается ли принципиально от того, что применяется для мобильных телефонов? На все поставленные вопросы мы попытаемся ответить далее в статье.

Общие сведения

Аккумулятор играет очень важную роль в функционировании устройств, агрегатов и механизмов, для работы которых необходимо электричество. Так, в транспортных средствах он помогает запустить двигатель машины. А в мобильных телефонах батареи позволяют нам совершать звонки.

Зарядка аккумулятора, схема и принципы работы данного устройства рассматриваются даже в школьном курсе физики. Но, увы, уже к выпуску многие эти знания успевают позабыть. Поэтому спешим напомнить, что в основу работы аккумулятора положен принцип возникновения разности напряжения (потенциалов) между двумя пластинами, которые специально погружаются в раствор электролита.

Первые батареи были медно-цинковыми. Но с того времени они существенно улучшились и модернизировались.

Как устроена аккумуляторная батарея

Единственный видимый элемент любого устройства - корпус. Он обеспечивает общность и целостность конструкции. Следует отметить, что наименование «аккумулятор» может быть полноценно применено только к одной ячейке батареи (их ещё называют банками), а том же стандартном автомобильном аккумуляторе на 12 В их всего шесть.

Возвращаемся к корпусу. К нему выдвигают жесткие требования. Так, он должен быть:

  • стойким к агрессивным химическим реагентам;
  • способным переносить значительные колебания температуры;
  • обладающим хорошими показателями вибростойкости.

Всем этим требованиям отвечает современный синтетический материал - полипропилен. Более детальные различия следует выделять только при работе с конкретными образцами.

Принцип работы

В качестве примера мы рассмотрим свинцово-кислотные батареи.

Когда есть нагрузка на клемму, то начинает происходить химическая реакция, которая сопровождается выделением электричества. Со временем батарея будет разряжаться. А как она восстанавливается? Есть ли простая схема?

Зарядка аккумулятора не является чем-то сложным. Необходимо осуществлять обратный процесс - подаётся электричество на клеммы, вновь происходят химические реакции (восстанавливается чистый свинец), которые в будущем позволят использовать аккумулятор.

Также во время зарядки происходит повышение плотности электролита. Таким образом батарея восстанавливает свои начальные свойства. Чем лучше были технология и материалы, которые применялись при изготовлении, тем больше циклов заряда/разряда может выдержать аккумулятор.

Какие электрические схемы зарядки аккумуляторов существуют

Классическое устройство делают из выпрямителя и трансформатора. Если рассматривать все те же автомобильные батареи с напряжением в 12 В, то зарядки для них обладают постоянным током примерно на 14 В.

Почему именно так? Такое напряжение необходимо для того, чтобы ток мог идти через разряженный автомобильный аккумулятор. Если он сам имеет 12 В, то устройство той же мощности ему помочь не сможет, поэтому и берут более высокие значения. Но во всём необходимо знать меру: если слишком завысить напряжение, то это пагубно скажется на сроке службы устройства.

Поэтому при желании сделать прибор своими руками, необходимо для машин искать подходящие схемы зарядки автомобильных аккумуляторов. Это же относится и к другой технике. Если необходима схема зарядки то тут необходимо устройство на 4 В и не больше.

Процесс восстановления

Допустим, у вас есть схема зарядки аккумулятора от генератора, по которой было собрано устройство. Батарея подключается и сразу же начинается процесс восстановления. По мере его протекания будет расти устройства. Вместе с ним будет падать зарядный ток.

Когда напряжение приблизится к максимально возможному значению, то этот процесс вообще практически не протекает. А это свидетельствует о том, что устройство успешно зарядилось и его можно отключать.

Необходимо следить, чтобы ток аккумулятора составлял только 10% от его емкости. Причем не рекомендовано ни превышать этот показатель, ни уменьшать его. Так, если вы пойдёте по первому пути, то начнёт испаряться электролит, что значительно повлияет на максимальную емкость и время работы аккумулятора. На втором пути необходимые процессы не будут происходить в требуемой интенсивности, из-за чего негативные процессы продолжатся, хотя и в несколько меньшей мере.

Зарядка

Описываемое устройство можно купить или собрать своими руками. Для второго варианта нам понадобятся электрические схемы зарядки аккумуляторов. Выбор технологии, по которой она будет делаться, должен происходить зависимо от того, какие батареи являются целевыми. Понадобятся такие составляющие:

  1. (конструируется на балластных конденсаторах и трансформаторе). Чем большего показателя удастся достичь, тем значительней будет величина тока. В целом, для работы зарядки этого должно хватить. Но вот надёжность данного устройства весьма низкая. Так, если нарушить контакты или что-то перепутать, то и трансформатор, и конденсаторы выйдут из строя.
  2. Защита на случай подключения «не тех» полюсов. Для этого можно сконструировать реле. Так, условная завязка базируется на диоде. Если перепутать плюс и минус, то он не будет пропускать ток. А поскольку на нём завязано реле, то оно будет обесточенным. Причем использовать данную схему можно с устройством, в основе которого и тиристоры, и транзисторы. Подключать её необходимо в разрыв проводов, с помощью которых сама зарядка соединяется с аккумулятором.
  3. Автоматика, которой должна обладать зарядка аккумулятора. Схема в данном случае должна гарантировать, что устройство будет работать только тогда, когда в этом действительно есть потребность. Для этого с помощью резисторов меняется порог срабатывания контролирующего диода. Считается, что аккумуляторы на 12 В являются полностью, когда их напряжение находится в рамках 12,8 В. Поэтому этот показатель является желанным для данной схемы.

Заключение

Вот мы и рассмотрели, что собой представляет зарядка аккумулятора. Схема данного устройства может быть выполнена и на одной плате, но следует отметить, что это довольно сложно. Поэтому их делают многослойными.

В рамках статьи вашему вниманию были представлены различные принципиальные схемы, которые дают понять, как же, собственно, происходит зарядка аккумуляторов. Но необходимо понимать, что это только общие изображения, а более детальные, имеющие указания протекающих химических реакций, являются особенными для каждого типа батареи.

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля
зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.


Если схема для повторения Вам показалась сложной, то можно собрать более , работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.


Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты
от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение . При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.

Схема автоматического отключения ЗУ
при полной зарядке аккумулятора

Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта.

Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В. Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора.


Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора.

Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время. После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме

Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.

Конструкция автоматического зарядного устройства

Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.


Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.


Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.

К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.

На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут также установлен предохранитель Пр1 на 1 А и вилка, (взята от блока питания компьютера) для подачи питающего напряжения.

Силовые диоды зарядного устройства закреплены с помощью двух прижимных планок к радиатору внутри корпуса. Для этого в задней стенке корпуса сделано прямоугольное отверстие. Такое техническое решение позволило к минимуму свести количество выделяемого тепла внутри корпуса и экономии места. Выводы диодов и подводящие провода распаяны на незакрепленную планку из фольгированного стеклотекстолита.

На фотографии вид самодельного зарядного устройства с правой стороны. Монтаж электрической схемы выполнен цветными проводами, переменного напряжения – коричневым, плюсовые – красным, минусовые – проводами синего цвета. Сечение проводов , идущих от вторичной обмотки трансформатора к клеммам для подключения аккумулятора должно быть не менее 1 мм 2 .

Шунт амперметра представляет собой отрезок высокоомного провода константана длиной около сантиметра, концы которого запаяны в медные полоски. Длина провода шунта подбирается при калибровке амперметра. Провод я взял от шунта сгоревшего стрелочного тестера. Один конец из медных полосок припаян непосредственно к выходной клемме плюса, ко второй полоске припаян толстый проводник, идущий от контактов реле Р3. На стрелочный прибор от шунта идут желтый и красный провод.

Печатная плата блока автоматики зарядного устройства

Схема автоматического регулирования и защиты от неправильного подключения аккумулятора к зарядному устройству спаяна на печатной плате из фольгированного стеклотекстолита.


На фотографии представлен внешний вид собранной схемы. Рисунок печатной платы схемы автоматического регулирования и защиты простой, отверстия выполнены с шагом 2,5 мм.


На фотографии выше вид печатной платы со стороны установки деталей с нанесенной красным цветом маркировкой деталей. Такой чертеж удобен при сборке печатной платы.


Чертеж печатной платы выше пригодится при ее изготовлении с помощью технологии с применением лазерного принтера.


А этот чертеж печатной платы пригодится при нанесении токоведущих дорожек печатной платы ручным способом.

Шкала стрелочного прибора милливольтметра В3-38 не подходила под требуемые измерения, пришлось начертить на компьютере свой вариант, напечатал на плотной белой бумаге и клеем момент приклеил сверху на штатную шкалу.

Благодаря большему размеру шкалы и калибровки прибора в зоне измерения, точность отсчета напряжения получилась 0,2 В.

Провода для подключения АЗУ к клеммам аккумулятора и сети

На провода для подключения автомобильного аккумулятора к зарядному устройству с одной стороны установлены зажимы типа крокодил, с другой стороны разрезные наконечники. Для подключения плюсового вывода аккумулятора выбран красный провод, для подключения минусового – синий. Сечение проводов для подключения к устройству аккумулятора должно быть не менее 1 мм 2 .


К электрической сети зарядное устройство подключается с помощью универсального шнура с вилкой и розеткой, как применяется для подключения компьютеров, оргтехники и других электроприборов.

О деталях зарядного устройства

Силовой трансформатор Т1 применен типа ТН61-220, вторичные обмотки которого соединены последовательно, как показано на схеме. Так как КПД зарядного устройства не менее 0,8 и ток заряда обычно не превышает 6 А, то подойдет любой трансформатор мощностью 150 ватт. Вторичная обмотка трансформатора должна обеспечить напряжение 18-20 В при токе нагрузки до 8 А. Если нет готового трансформатора, то можно взять любой подходящий по мощности и перемотать вторичную обмотку. Рассчитать число витков вторичной обмотки трансформатора можно с помощью специального калькулятора .

Конденсаторы С4-С9 типа МБГЧ на напряжение не менее 350 В. Можно использовать конденсаторы любого типа, рассчитанные на работу в цепях переменного тока.

Диоды VD2-VD5 подойдут любого типа, рассчитанные на ток 10 А. VD7, VD11 - любые импульсные кремневые. VD6, VD8, VD10, VD5, VD12 и VD13 любые, выдерживающие ток 1 А. Светодиод VD1 – любой, VD9 я применил типа КИПД29. Отличительная особенность этого светодиода, что он меняет цвет свечения при смене полярности подключения. Для его переключения использованы контакты К1.2 реле Р1. Когда идет зарядка основным током светодиод светит желтым светом, а при переключении в режим подзарядки аккумулятора – зеленым. Вместо бинарного светодиода можно установить любых два одноцветных, подключив их по ниже приведенной схеме.

В качестве операционного усилителя выбран КР1005УД1, аналог зарубежного AN6551. Такие усилители применяли в блоке звука и видео в видеомагнитофоне ВМ-12. Усилитель хорош тем, что не требует двухполярного питания, цепей коррекции и сохраняет работоспособность при питающем напряжении от 5 до 12 В. Заменить его можно практически любым аналогичным. Хорошо подойдут для замены микросхемы, например, LM358, LM258, LM158, но нумерация выводов у них другая, и потребуется внести изменения в рисунок печатной платы.

Реле Р1 и Р2 любые на напряжение 9-12 В и контактами, рассчитанными на коммутируемый ток 1 А. Р3 на напряжение 9-12 В и ток коммутации 10 А, например РП-21-003. Если в реле несколько контактных групп, то их желательно запаять параллельно.

Переключатель S1 любого типа, рассчитанный на работу при напряжении 250 В и имеющий достаточное количество коммутирующих контактов. Если не нужен шаг регулирования тока в 1 А, то можно поставить несколько тумблеров и устанавливать ток заряда, допустим, 5 А и 8 А. Если заряжать только автомобильные аккумуляторы, то такое решение вполне оправдано. Переключатель S2 служит для отключения системы контроля уровня зарядки. В случае заряда аккумулятора большим током, возможно срабатывание системы раньше, чем аккумулятор зарядится полностью. В таком случае можно систему отключить и продолжить зарядку в ручном режиме.

Электромагнитная головка для измерителя тока и напряжения подойдет любая, с током полного отклонения 100 мкА, например типа М24. Если нет необходимости измерять напряжение, а только ток, то можно установить готовый амперметр, рассчитанный на максимальный постоянный ток измерения 10 А, а напряжение контролировать внешним стрелочным тестером или мультиметром, подключив их к контактам аккумулятора.

Настройка блока автоматической регулировки и защиты АЗУ

При безошибочной сборке платы и исправности всех радиоэлементов, схема заработает сразу. Останется только установить порог напряжения резистором R5, при достижении которого зарядка аккумулятора будет переведена в режим зарядки малым током.

Регулировку можно выполнить непосредственно при зарядке аккумулятора. Но все, же лучше подстраховаться и перед установкой в корпус, схему автоматического регулирования и защиты АЗУ проверить и настроить. Для этого понадобится блок питания постоянного тока, у которого есть возможность регулировать выходное напряжение в пределах от 10 до 20 В, рассчитанного на выходной ток величиной 0,5-1 А. Из измерительных приборов понадобится любой вольтметр, стрелочный тестер или мультиметр рассчитанный на измерение постоянного напряжения, с пределом измерения от 0 до 20 В.

Проверка стабилизатора напряжения

После монтажа всех деталей на печатную плату нужно подать от блока питания питающее напряжение величиной 12-15 В на общий провод (минус) и вывод 17 микросхемы DA1 (плюс). Изменяя напряжение на выходе блока питания от 12 до 20 В, нужно с помощью вольтметра убедиться, что величина напряжения на выходе 2 микросхемы стабилизатора напряжения DA1 равна 9 В. Если напряжение отличается или изменяется, то DA1 неисправна.

Микросхемы серии К142ЕН и аналоги имеют защиту от короткого замыкания по выходу и если закоротить ее выход на общий провод, то микросхема войдет в режим защиты и из строя не выйдет. Если проверка показала, что напряжение на выходе микросхемы равно 0, то это не всегда означает о ее неисправности. Вполне возможно наличие КЗ между дорожками печатной платы или неисправен один из радиоэлементов остальной части схемы. Для проверки микросхемы достаточно отсоединить от платы ее вывод 2 и если на нем появится 9 В, значит, микросхема исправна, и необходимо найти и устранить КЗ.

Проверка системы защиты от перенапряжения

Описание принципа работы схемы решил начать с более простой части схемы, к которой не предъявляются строгие нормы по напряжению срабатывания.

Функцию отключения АЗУ от электросети в случае отсоединения аккумулятора выполняет часть схемы, собранная на операционном дифференциальном усилителе А1.2 (далее ОУ).

Принцип работы операционного дифференциального усилителя

Без знания принципа работы ОУ разобраться в работе схемы сложно, поэтому приведу краткое описание. ОУ имеет два входа и один выход. Один из входов, который обозначается на схеме знаком «+», называется неинвертирующим, а второй вход, который обозначается знаком «–» или кружком, называется инвертирующим. Слово дифференциальный ОУ означает, что напряжение на выходе усилителя зависит от разности напряжений на его входах. В данной схеме операционный усилитель включен без обратной связи, в режиме компаратора – сравнения входных напряжений.

Таким образом, если напряжение на одном из входов будет неизменным, а на втором изменятся, то в момент перехода через точку равенства напряжений на входах, напряжение на выходе усилителя скачкообразно изменится.

Проверка схемы защиты от перенапряжения

Вернемся к схеме. Неинвертирующий вход усилителя А1.2 (вывод 6) подключен к делителю напряжения, собранного на резисторах R13 и R14. Этот делитель подключен к стабилизированному напряжению 9 В и поэтому напряжение в точке соединения резисторов, никогда не изменяется и составляет 6,75 В. Второй вход ОУ (вывод 7) подключен ко второму делителю напряжения, собранному на резисторах R11 и R12. Этот делитель напряжения подключен к шине, по которой идет зарядный ток, и напряжение на нем меняется в зависимости от величины тока и степени заряда аккумулятора. Поэтому и величина напряжения на выводе 7 тоже будет, соответственно изменятся. Сопротивления делителя подобраны таким образом, что при изменении напряжения зарядки аккумулятора от 9 до 19 В напряжение на выводе 7 будет меньше, чем на выводе 6 и напряжение на выходе ОУ (вывод 8) будет больше 0,8 В и близко к напряжению питания ОУ. Транзистор будет открыт, на обмотку реле Р2 будет поступать напряжение и оно замкнет контакты К2.1. Напряжение на выходе также закроет диод VD11 и резистор R15 в работе схемы участвовать не будет.

Как только напряжение зарядки превысит 19 В (это может случится только в случае, если от выхода АЗУ будет отключен аккумулятор), напряжение на выводе 7 станет больше, чем на выводе 6. В этом случае на выходе ОУ напряжение скачкообразно уменьшится до нуля. Транзистор закроется, реле обесточится и контакты К2.1 разомкнутся. Подача питающего напряжения на ОЗУ будет прекращена. В момент, когда напряжение на выходе ОУ станет равно нулю, откроется диод VD11 и, таким образом, параллельно к R14 делителя подключится R15. Напряжение на 6 выводе мгновенно уменьшится, что исключит ложные срабатывания в момент равенства напряжений на входах ОУ из-за пульсаций и помех. Изменяя величину R15 можно менять гистерезис компаратора, то есть напряжение, при котором схема вернется в исходное состояние.

При подключения аккумулятора к ОЗУ напряжения на выводе 6 опять установится равным 6,75 В, а на выводе 7 будет меньше и схема начнет работать в штатном режиме.

Для проверки работы схемы достаточно изменять напряжение на блоке питания от 12 до 20 В и подключив вольтметр вместо реле Р2 наблюдать его показания. При напряжении меньше 19 В, вольтметр должен показывать напряжение, величиной 17-18 В (часть напряжения упадет на транзисторе), а при большем – ноль. Желательно все же подключить к схеме обмотку реле, тогда будет проверена не только работа схемы, но и его работоспособность, а по щелчкам реле можно будет контролировать работу автоматики без вольтметра.

Если схема не работает, то нужно проверить напряжения на входах 6 и 7, выходе ОУ. При отличии напряжений от указанных выше, нужно проверить номиналы резисторов соответствующих делителей. Если резисторы делителей и диод VD11 исправны, то, следовательно, неисправен ОУ.

Для проверки цепи R15, D11 достаточно отключить одни из выводов этих элементов, схема будет работать, только без гистерезиса, то есть включаться и отключаться при одном и том же подаваемом с блока питания напряжении. Транзистор VT12 легко проверить, отсоединив один из выводов R16 и контролируя напряжение на выходе ОУ. Если на выходе ОУ напряжение изменяется правильно, а реле все время включено, значит, имеет место пробой между коллектором и эмиттером транзистора.

Проверка схемы отключения аккумулятора при полной его зарядке

Принцип работы ОУ А1.1 ничем не отличается от работы А1.2, за исключением возможности изменять порог отключения напряжения с помощью подстроечного резистора R5.

Для проверки работы А1.1, питающее напряжение, поданное с блока питания плавно увеличивается и уменьшается в пределах 12-18 В. При достижении напряжения 15,6 В должно отключиться реле Р1 и контактами К1.1 переключить АЗУ в режим зарядки малым током через конденсатор С4. При снижении уровня напряжения ниже 12,54 В реле должно включится и переключить АЗУ в режим зарядки током заданной величины.

Напряжение порога включения 12,54 В можно регулировать изменением номинала резистора R9, но в этом нет необходимости.

С помощью переключателя S2 имеется возможность отключать автоматический режим работы, включив реле Р1 напрямую.

Схема зарядного устройства на конденсаторах
без автоматического отключения

Для тех, кто не имеет достаточного опыта по сборке электронных схем или не нуждается в автоматическом отключении ЗУ по окончании зарядки аккумулятора, предлагаю упрощенней вариант схемы устройства для зарядки кислотных автомобильных аккумуляторов. Отличительная особенность схемы в ее простоте для повторения, надежности, высоком КПД и стабильным током заряда, наличие защиты от неправильного подключения аккумулятора, автоматическое продолжение зарядки в случае пропадания питающего напряжения.


Принцип стабилизации зарядного тока остался неизменным и обеспечивается включением последовательно с сетевым трансформатором блока конденсаторов С1-С6. Для защиты от перенапряжения на входной обмотке и конденсаторах используется одна из пар нормально разомкнутых контактов реле Р1.

Когда аккумулятор не подключен, контакты реле Р1 К1.1 и К1.2 разомкнуты и даже если зарядное устройство подключено к питающей сети ток не поступает на схему. Тоже самое происходит, если подключить ошибочно аккумулятор по полярности. При правильном подключении аккумулятора ток с него поступает через диод VD8 на обмотку реле Р1, реле срабатывает и замыкаются его контакты К1.1 и К1.2. Через замкнутые контакты К1.1 сетевое напряжение поступает на зарядное устройство, а через К1.2 на аккумулятор поступает зарядный ток.

На первый взгляд кажется, что контакты реле К1.2 не нужны, но если их не будет, то при ошибочном подключении аккумулятора, ток потечет с плюсового вывода аккумулятора через минусовую клемму ЗУ, далее через диодный мост и далее непосредственно на минусовой вывод аккумулятора и диоды моста ЗУ выйдут из строя.

Предложенная простая схема для зарядки аккумуляторов легко адаптируется для зарядки аккумуляторов на напряжение 6 В или 24 В. Достаточно заменить реле Р1 на соответствующее напряжение. Для зарядки 24 вольтовых аккумуляторов необходимо обеспечить выходное напряжение с вторичной обмотки трансформатора Т1 не менее 36 В.

При желании схему простого зарядного устройства можно дополнить прибором индикации зарядного тока и напряжения, включив его как в схеме автоматического зарядного устройства.

Порядок зарядки автомобильного аккумулятора
автоматическим самодельным ЗУ

Перед зарядкой снятый с автомобиля аккумулятор необходимо очистить от грязи и протереть его поверхности, для удаления кислотных остатков, водным раствором соды. Если кислота на поверхности есть, то водный раствор соды пенится.

Если аккумулятор имеет пробки для заливки кислоты, то все пробки нужно выкрутить, для того, чтобы образующиеся при зарядке в аккумуляторе газы могли свободно выходить. Обязательно нужно проверить уровень электролита, и если он меньше требуемого, долить дистиллированной воды.

Далее нужно переключателем S1 на зарядном устройстве выставить величину тока заряда и подключить аккумулятор соблюдая полярность (плюсовой вывод аккумулятора нужно подсоединить к плюсовому выводу зарядного устройства) к его клеммам. Если переключатель S3 находится в нижнем положении, то стрелка прибора на зарядном устройстве сразу покажет напряжение, которое выдает аккумулятор. Осталось вставить вилку сетевого шнура в розетку и процесс зарядки аккумулятора начнется. Вольтметр уже начнет показывать напряжение зарядки.

Существуют огромное число схем и конструкций, которые позволят нам зарядить автомобильный аккумулятор, в данной статье рассмотрим лишь некоторые из них, но наиболее интересные и максимально простые

За основу этого зарядника для авто возьмем одну из самых простых схем которые я смог откопать в просторах интернета, мне в первую очередь понравился тот факт, что трансформатор можно позаимствовать из старого телевизора

Как уже сказал выше, самую дорогую часть зарядника я взял из блока питания телевизора Рекорд, им оказался силовой трансформатор ТС-160, что особо порадоволо на нем имелась табличка с отображением всех возможных напряжений и тока. Я выбрал сочетание с максимальным током, т.е со вторичной обмотки я взял 6,55 в на 7,5 А


Но как известно для зарядки автомобильного аккумулятора требуется 12 вольт, поэтому мы просто соеденяем две обмотки с одинаковыми параметрами последовательно (9 и 9" и 10 и 10"). А на выходе получим 6.55 + 6.55 = 13.1 В. переменного напряжения. Для его выпрямления потребуется собирать диодный мост, но учитывая большую силу тока диоды должны быть не слабыми. (Их параметры вы можете посмотреть в ). Я взял рекомендованные схемой отечественные диоды Д242А

Из курса электротехники нам известно, что разряженный аккумулятор имеет низкое , которое по мере заряда возрастает. Исходя из сила тока в начале процесса зарядки будет весьма высокая. И через диоды будет протекать большой ток из-за чего диоды будут нагреваться. Поэтому, чтобы их не сжечь, нужноиспользовать радиатор. В качестве радиатора проще всего использовать корпус нерабочего блока питания от;компьютера. Ну и для понимания на какой стадии идет зарядка аккумулятора мы используем амперметр который включаем последовательно. Когда зарядный ток упадет до 1А считаем аккумулятор полностью заряженым. Не выкидывайте из схемы предохранитель, иначе при замыкании вторичной обмотки (что может иногда происходить при сгорании накоротко одного из диодов) у вас накроется силовой трансформатор

Рассмотренное ниже простое самодельное зарядное устройство обладает большими пределами регулирования зарядного тока до 10 А, и отлично справляется с зарядкой различных стартерных батарей аккумуляторов расчитанных на напряжение 12 В, т.е подходит для большинства современных автомобилей.

Схема зарядного устройства выполнена на симисторном регуляторе, с дополнительными диодным мостом и резисторами R3 и R5.

Работа устройства При подаче питания при положительном полупериоде по цепи R3 - VD1 - R1 и R2 - SA1 заряжается конденсатор С2. При минусовом полупериоде конденсатор C2 заряжается уже через диод VD2 изменяется только полярность зарядки. В момент достижения порогового уровня заряда на конденсаторе вспыхнет неоновая лампа, и конденсатор разряжается через нее и управляющий электрод сммистора VS1. При этом последний откроется на оставшееся время до конца полупериода. Описанный процесс цикличен и повторяется в каждый полупериод сети.

Резистор R6 используется для формирования импульсов разрядного тока, что увеличивает срок службы батареи. Трансформатор должен обеспечивать напряжение на вторичной обмотке 20 В при токе 10 А. Симистор и диоды необходимо разместить на радиаторе. Резистор R1 регулирующий зарядный ток желательно разместить на передней панели.

При наладке схемы сначала устанавливают требуемый предел зарядного тока резистором R2. Амперметр на 10А вставляют в разрыв цепи, затем ручку переменного резистора R1 устанавливают в крайнее положение, а резистора R2 – в противоположное, и подключают устройство к сети. Двигая ручку R2, устанавливают требуемое значение максимального зарядного тока. В заключении калибруют шкалу резистора R1 в амперах. Необходимо помнить, что при зарядки батареи ток через нее уменьшаясь в среднем на 20% к концупроцесса. Поэтому перед началом операции следует установить начальный ток чуть больше номинального значения. Окончание процесса заряда определяют с помощью вольтметра – напряжение отключенной батареи должно быть 13,8 - 14,2 В.

Автомат для зарядного устройства автомобиля - Схема включает батарею на зарядку при понижении на ней напряжения до определенного уровня и отключает при достижении максимума. Максимальным напряжением для кислотных автомобильных аккумуляторов является величина 14,2...14,5 В, а минимально допустимое при разряде - 10,8 В

Автомат-переключатель полярности напряжения для зарядного устройства - предназначен для зарядки двенадцативольтных автомобильных аккумуляторных батареи. Главная его фича состоит в том, что оно допускает подключение батареи, при любой полярности.

Автоматическое зарядное устройство - Схема состоит из стабилизатора тока на транзисторе VT1, контрольного устройства на компараторе D1, тиристора VS1 для фиксации состояния и ключевого транзистора VT2, управляющего работой реле К1

Восстановление и зарядка автомобильного аккумулятора - Способ востановления "ассимметричным" током. При этом соотношение зарядного и разрядного тока выбрано 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.

Способ восстановление кислотных аккумуляторов переменным током - Технология восстановления свинцовых аккумуляторов переменным током позволяет в кратчайшее время снизить внутреннее сопротивление до заводского значения, при незначительном нагреве электролита. Положительный полупериод тока используется полностью при зарядке аккумуляторов с незначительной рабочей сульфатацией, когда мощности зарядного импульса тока достаточно для восстановления пластин.

Если в вашем автомобиле появился гелиевый аккумулятор, то появится вопрос как его заряжать. Поэтому предлагаю эту несложную схему на микросхеме L200C, которая представляет собой обычный стабилизатор напряжения с программируемым ограничителем выходного тока. R2-R6 - Токозадающие резисторы. Микросхему желательно разместить на радиаторе. Резистор R7 подстраивает выходное напряжение от 14 до 15 вольт.


Если использовать диоды в металлическом корпусе, то их можно не устанавливать на радиаторе. Трансформатор подбираем с выходным напряжение на вторичной обмотке 15 вольт.

Достаточно простая схема расчитанная на зарядный ток до десяти ампер, отлично справляется с аккумуляторами от автомобиля "Камаз"

Свинцовые аккумуляторы очень критичны к условиям эксплуатации. Одним из этих условий является заряд и разряд аккумулятора. Чрезмерный заряд приводит к выкипанию электролита и разрушительным процессам в положительных пластинах. Эти процессы усиливаются, если зарядный ток велик

Рассмотрено несколько простых схем для зарядки автомобильных аккумуляторов

Схема автоматического зарядного устройства для автомобильных аккумуляторов описанная в данной статье, позволяет осуществлять зарядку аккумулятора в автомобиле в автоматическом режиме т.е схема автоматически отключит аккумулятор по окончанию процесса заряда.

Иногда возникает необходимость зарядки аккумулятора вдалеке от тихого и уютного гаража, а зарядки нет. Не беда, давайте попробуем слепить ее из того, что было. Например, для самой простой зарядки нам потребуется лампочка накаливания и диод.

Лампу накаливания можно взять любую, но на напряжение 220 вольт, а вот диод должен быть обязательно мощный рассчитанный на ток до 10 Ампер, поэтому его лучше всего установить на радиатор.

Чтоб увеличить ток заряда можно лампу можно заменить более мощной нагрузкой, например электрическим обогревателем.

Ниже дана схема чуть более сложная схема ЗУ, в качестве нагрузки которой используется кипятильник, электроплитка или т.п.

Диодный мост можно позаимствовать из старого компьютерного блока питания. Но не применяйте диоды Шотки хотя они и достаточно мощные, но их обратное напряжение порядка 50-60 Вольт, поэтому они сразу же сгорят.

Бывают случаи, особенно зимой, когда владельцы автомобилей нуждаются в подзарядке автомобильного аккумулятора от внешнего источника питания. Безусловно, людям, не имеющим хороших навыков работы с электротехникой, желательно купить заводское устройство зарядки аккумуляторной батареи , ещё лучше приобрести пуско-зарядное устройство для запуска двигателя с разряженным аккумулятором без потерь времени на внешнюю подзарядку.

Но если есть небольшие знания в области электроники, можно собрать простое зарядное устройство своими руками .

Общая характеристика

Для правильного обслуживания аккумулятора и продления срока его службы подзарядка требуется при падении напряжения на клеммах ниже 11,2 В. При таком напряжении двигатель, скорее всего, запустится, но при долгой стоянке зимой это приведёт к сульфатации пластин и, как следствие, к снижению ёмкости батареи. При длительной стоянке зимой необходимо регулярно следить за вольтажом на клеммах АКБ. Оно должно составлять 12 В. Лучше всего снять батарею и занести её в тёплое место, не забывая при этом следить за уровнем заряда .

Зарядка АКБ производится постоянным или импульсным током. При использовании блока питания постоянного напряжения ток для правильной зарядки должен составлять одну десятую часть от ёмкости батареи . Если ёмкость АКБ составляет 50 А-ч, то для зарядки необходим ток 5 ампер.

Для продления срока службы АКБ применяют методики десульфатации аккумуляторных пластин. Батарею разряжают до напряжения менее пяти вольт многократным потреблением большого тока краткой длительности. Пример такого потребления - запуск стартера . После этого производят медленную полную зарядку маленьким током в пределах одного ампера. Повторяют процесс 8-9 раз. Метод десульфатации является долгим по времени, но согласно всем исследованиям даёт хороший результат.

Нужно помнить, что при зарядке важно не допускать перезаряда АКБ. Заряд производится до напряжения 12,7-13,3 вольт и зависит от модели батареи. Максимальный заряд указывается в документации к аккумулятору, которую всегда можно найти в интернете.

Перезаряд вызывает закипание , увеличивает плотность электролита и, как следствие, разрушение пластин. Заводские устройства зарядки имеют системы контроля заряда и последующего отключения. Собрать самостоятельно такие системы , не обладая достаточными знаниями в электронике, достаточно сложно.

Схемы для сборки своими руками

Стоит рассказать о простых устройствах зарядки, которые можно собрать, обладая минимальными знаниями в электронике, а ёмкость заряда отследить путём подключения вольтметра или обыкновенного тестера.

Схема зарядки для экстренных случаев

Бывают случаи, когда автомобиль, простоявший ночь возле дома, утром невозможно завести из-за разряженного аккумулятора. Причин возникновения этого неприятного обстоятельства может быть много.

Если аккумулятор был в хорошем состоянии и немного разрядился, решить проблему помогут:

В качестве источника питания отлично подойдёт зарядное устройство от ноутбука . Оно обладает выходным напряжением в 19 вольт и током в пределах двух ампер, чего вполне достаточно для выполнения поставленной задачи. На выходном разъёме, как правило, внутренний вход - плюс, внешний контур штекера - минус.

В качестве ограничительного сопротивления, которое является обязательным, можно применить салонную лампочку. Можно использовать и более мощные лампы , например, от габаритов, но это создаст лишнюю нагрузку на блок питания, что очень нежелательно.

Собирается элементарная схема: минус блока питания подключается к лампочке, лампочка к минусу АКБ. Плюс идёт напрямую от батареи к блоку питания. В течение двух часов аккумулятор получит заряд для запуска двигателя .

Из блока питания от стационарного компьютера

Такое устройство более сложно в изготовлении, но его можно собрать с минимальными познаниями в электронике. Основой послужит ненужный блок от системного блока компьютера. Выходные напряжения таких блоков +5 и +12 вольт с выходным током около двух ампер. Эти параметры позволяют собрать немощное зарядное устройство, которое при правильной сборке долго и надёжно послужит хозяину . Полная зарядка аккумулятора займёт длительное время и будет зависеть от ёмкости батареи, но не будет создаваться эффекта десульфатации пластин. Итак, пошаговая сборка прибора:

  1. Разобрать блок питания и выпаять все провода кроме зелёного. Запомнить или отметить места входа чёрного (GND) и жёлтого +12 В.
  2. Зелёный провод припаять к месту, где находился чёрный (это необходимо для старта блока без системной платы ПК). На место чёрного провода припаять отвод, который будет минусовым для зарядки АКБ. На место жёлтого провода припаять плюсовой отвод зарядки аккумулятора.
  3. Необходимо найти микросхему TL 494 или её аналог. Список аналогов легко найти в интернете, один из них обязательно будет найден в схеме. При всём многообразии блоков без этих микросхем их не производят.
  4. От первой ноги этой микросхемы - она левая нижняя, найти резистор, который идёт на выход +12 вольт (жёлтый провод). Это можно сделать визуально по дорожкам на схеме, можно при помощи тестера, подключив питание и замерив напряжение на входе резисторов, идущих к первой ноге. Не стоит забывать, что на первичную обмотку трансформатора идёт напряжение 220 вольт, поэтому нужно соблюдать меры безопасности при запуске блока без корпуса.
  5. Выпаять найденный резистор, замерить его сопротивление тестером. Подобрать близкий по номиналу переменный резистор. Выставить его на номинал нужного сопротивления и запаять на место удалённого элемента схемы гибкими проводами.
  6. Запустив блок питания путём регулировки переменного резистора, получить напряжение 14 В, в идеале 14.3 В. Главное, не перестараться помня, что 15 В, как правило, предел для отработки защиты и, как следствие, отключения.
  7. Выпаять переменный резистор, не сбив его настройку, и замерить получившееся сопротивление. Необходимый или максимально близкий номинал сопротивления подобрать или набрать из нескольких резисторов и запаять в схему.
  8. Блок проверить, на выходе должно быть искомое напряжение. При желании к выходам на схеме плюса и минуса можно подключить вольтметр, поместив его на корпусе для наглядности. Последующая сборка происходит в обратном порядке. Прибор готов к использованию.

Блок прекрасно заменит недорогую заводскую зарядку и достаточно надёжен. Но ОБЯЗАТЕЛЬНО нужно помнить, что устройство имеет защиту от перегрузки, но это не спасёт от ошибки в полярности. Проще говоря, если перепутать плюс и минус при подключении к АКБ, зарядное мгновенно выйдет из строя .

Схема зарядного устройства из старого трансформатора

Если под рукой нет старого блока питания от компьютера, и радиотехнический опыт позволяет самостоятельно монтировать несложные схемы, то можно воспользоваться следующей довольно интересной схемой зарядки АКБ с контролем и регулировкой подаваемого напряжения.

Для сборки устройства можно воспользоваться трансформаторами от старых блоков бесперебойного питания или телевизоров советского производства . Подойдёт любой мощный понижающий трансформатор с суммарным набором напряжений на вторичных обмотках примерно 25 вольт.

Диодный выпрямитель собран на двух диодах КД 213А (VD 1, VD 2), которые устанавливаются обязательно на радиатор и могут быть заменены любыми импортными аналогами. Аналогов много, и они легко подбираются по справочникам в интернете. Наверняка нужные диоды найдутся дома в старой ненужной аппаратуре.

Такой же метод можно применить для замены управляющего транзистора КТ 827А (VT 1) и стабилитрона Д 814 А (VD 3). Транзистор устанавливается на радиатор.

Регулировка подаваемого напряжения осуществляется переменным резистором R2. Схема простая и заведомо рабочая. Собрать её сможет человеку с минимальными познаниями в электронике .

Импульсная зарядка для АКБ

Схема сложна в сборке, но это единственный недостаток. Найти простую схему импульсного блока зарядки вряд ли получится. Это компенсируется плюсами: такие блоки почти не греются, при этом имеют серьёзную мощность и большой КПД, отличаются компактным размером. Предложенная схема, в смонтированном на плате виде, уместиться в контейнер размером 160*50*40 мм. Для сборки прибора необходимо понимать принцип работы ШИМ (Широтно-импульсная модуляция) генератора. В предложенном варианте он реализован при помощи распространённого и недорогого контроллера IR 2153.

При применённых конденсаторах мощность прибора 190 Ватт. Этого хватит для зарядки любого аккумулятора лёгкого автомобиля ёмкостью до 100 А-ч. Установив конденсаторы по 470 мкФ, мощность возрастёт в два раза. Станет возможна зарядка АКБ ёмкостью до двухсот ампер/часов.

При использовании устройств без автоматического контроля заряда АКБ можно применить простейшее сетевое, суточное реле китайского производства. Это избавит от необходимости следить за временем отключения блока от сети.

Стоимость такого прибора около 200 рублей. Зная примерное время зарядки своего аккумулятора, можно выставить нужное время отключения. Это гарантирует своевременное прекращение подачи электричества. Можно отвлечься на дела и забыть о АКБ, что может привести к закипанию, разрушению пластин и выходу аккумулятора из строя. Новый аккумулятор будет стоить гораздо дороже

Меры предосторожности

При использовании приборов, собранных своими руками, следует соблюдать следующие меры безопасности:

  1. Все приборы, включая АКБ, должны находиться на огнеупорной поверхности.
  2. При первичном применении изготовленного прибора необходимо обеспечить полный контроль всех параметров зарядки. Обязательно нужно контролировать температуру нагрева всех элементов зарядки и АКБ, нельзя допускать закипания электролита. Параметры напряжения и тока контролируют тестером. Первичный контроль поможет определить время полной зарядки аккумулятора, что пригодится в будущем.

Собрать зарядку для АКБ несложно даже для новичка. Главное, делать всё внимательно и соблюдать меры безопасности, т. к. придётся иметь дело с открытым напряжением в 220 вольт.